

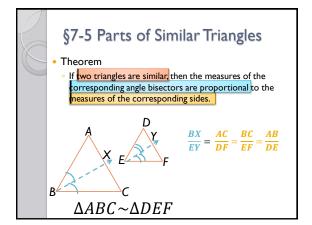
§7-5 Parts of Similar Triangles			
• Theorem			
 If two triangles are similar, then the measures of 			
the corresponding altitudes are proportional to			
the measures of the corresponding sides.			
$ \begin{array}{cccc} A & D \\ \hline A & D \\ \hline D & AX \\ \hline DY & DY \\ \hline P & DF \\ \hline P & DF \end{array} = \frac{BC}{BF} = \frac{AB}{DE} $			
$\Delta \widehat{A}BC{\sim}\Delta DEF$			

§7-5 Parts of Similar Triangles

- Example
 - In the figure, $\Delta ABC \sim \Delta DEF$. If \overline{BG} is an altitude of ΔABC , and \overline{EH} is an altitude of ΔDEF , then complete the following.

$$\frac{BG}{EH} = \frac{AB}{DE}$$

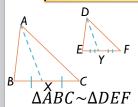
$$\frac{BG}{EH} = \frac{BC}{EF}$$



§7-5 Parts of Similar Triangles • Proof of the theorem. • Given: $\Delta RTS \sim \Delta EGF$ TA is an angle bisector of $\angle RTS$ GB is an angle bisector of $\angle EGF$ • Prove: $\frac{TA}{CB} = \frac{RT}{CC}$	
Statement	Reason
I. ΔRTS∼ΔEGF	I. Given
2. $\angle RTS \cong \angle EGF$ $\angle R \cong \angle E$	2. 2 Δs are $\sim \Leftrightarrow$ corr. $\angle s$ are \cong and corr. sides are proportional (Def. $\sim \Delta s$)
3. \overline{TA} is an angle bisector of $\angle RTS$ \overline{GB} is an angle bisector of $\angle EGF$	3. Given
$4. \angle RTA \cong \angle ATS; \angle EGB \cong \angle BGF$	4. Def. angle bisectors
$5. m \angle RTA = m \angle ATS; m \angle EGB = m \angle BGF \\ m \angle RTS = m \angle EGF$	5. Def. ≅ ∠s
$6. m \angle RTA + m \angle ATS = m \angle RTS; \\ m \angle EGB + m \angle BGF = m \angle EGF;$	6. ∠ Add. Post. Continued on board

§7-5 Parts of Similar Triangles

- Theorem
 - If two triangles are similar, then the measures of the corresponding medians are proportional to the measures of the corresponding sides.



$$\frac{AX}{DY} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{AB}{DE}$$

§7-5 Parts of Similar Triangles

- Example
 - Find the value of x.

- 16 Since the triangles are similar (AA \sim Post.) we know that the medians are proportional to the sides.
- Therefore, $\frac{20}{x} = \frac{16}{12}$

$$\frac{20}{x} = \frac{4}{3}$$

$$x = 15$$